Topology and the Classification of Matter

New Physics Hidden in Plain Sight

Arrange by Atomic Weight

Reihen	Grappo I. 	Gruppo II. 	Gruppo III. R ¹ 0 ³	Gruppe 1V. RH ⁴ RO ²	Grappe V. RH ⁱ R*0 ⁵	Grappo VI. RH ^a RO ³	Gruppo VII. RH R*07	Groppo VIII. RO4
1	II=1							
2	Li=7	Bo=9,4	B==11	C=12	N=14	0=16	F=19	
8	Na=28	Mg=24	A1=27,8	Si=28	P==31	8=32	Cl==35,5	
4	K≕39	Ca== 40	-==44	Ti=48	V==51	Cr= 52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Ca=63)	Zn=65	-=68	-=72	As=75	So=78	Br=80	
6	Rb== 86	Sr=87	?Yt=88	Zr= 90	Nb= 94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag=108)	Cd=112	In=113	Sn==118	Sb==122	Te== 125	J=127	
8	Cs== 183	Ba=187	?Di=138	?Ce=140	-	-	-	
9	(-)	-	_	-	-	-	-	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	fig=200	T1=204	Pb== 207	Bi=208		-	12
12	-	-	-	Th=231	-	U==240	-	

Phylogenetic Tree

All science is either physics or stamp collecting.

Ernest Rutherford

Nobel Prize 1908

... in Chemistry

Phylogenetic Tree

Arrange by Atomic Weight

Reiben	Grappo I. — R*0	Gruppo II. 	Gruppe III. R*0*	Gruppe IV. RH ⁴ RO ²	Groppe V. RH ³ R ² 0 ⁵	Grappe VI. RH ^a RO ^a	Gruppo VII. RH R*0'	Gruppo VIII. RO	
1	II=1								He = 4
2	Li=7	Be=9,4	B==11	C=12	N=14	0=16	F=19		Ne = 2
8	Na=28	Mg== 24	A1=27,8	Si=28	P=31	8=32	Cl== 35,5		Ar = 4(
4	K≕39	Ca=40	-==44	Ti=48	V==51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.	
5	(Ca=63)	Zn=65	-=68	-=72	As=75	So=78	Br=80		Kr = 83
6	Rb == 86	Sr=87	?Yt=88	Zr= 90	Nb= 94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.	
7	(Ag=108)	Cd=112	In=113	Sn==118	Sb=122	Te=125	J=127		Xe = 13
8	Cs== 183	Ba=187	?Di=138	?Ce=140	-	-	-		
9	(-)	-		-	-	-	-		
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.	
11	(Au=199)	fig=200	T1=204	Pb== 207	Bi=208		-	10	
12	-	-	-	Th=231	-	U==240	-		

Henry Moseley, Oxford, 1913 Died 1915, Gallipoli, Age 27

X-ray technique "measures" number of protons in an atom

Put elements in (undisputable) correspondence with positive integers.

Isaac Asimov: His death might well have been the most costly single death of the War to mankind generally

Robert Millikan: Had the European war had no other result than the snuffling out of this young life, that alone would make it one of the most hideous and most irreparable crimes in history."

Arrange by Number of Protons

1 1 H																	18 2 He
1.008	2											13	14	15	16	17	4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	0	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	16 Rh 102.91	Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actinide series		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

THE PERIODIC TABLE OF EVERYTHING

How Many Types of Matter

- ~100 Chemical Elements
- Over 30 Million Chemical Compounds are in "Chemical Abstract Services"

- Infinite number are possible in principle?
- Can form mixtures, alloys, solutions of compounds

More possibilities than atoms in the universe!

Lev Landau 1908-1968 Nobel Prize 1962

CLASSIFY BY SYMMETRIES

Obvious symmetries

Rotate by 90 degrees Get back same thing

Subtle (abstract) symmetries:

• Time Reversal, T

(Materials without Magnetism have T symmetry)

Charge Conjugation, C
 Replace all + charges with – charges
 Ex: electrons become positrons
 (Superconductors have C symmetry)

TOPOLOGY

The Nobel Prize in Physics 2016

David J. Thouless Prize share: 1/2

F. Duncan M. Haldane Prize share: 1/4

J. Michael Kosterlitz Prize share: 1/4

DPhil Oxford 1969

TOPOLOGY

Wikipedia: Topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing.

TOPOLOGY

Wikipedia: Topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing.

Cannot deform from torus to sphere without encountering a "singularity"

Cannot deform from torus to sphere without encountering a *"singularity"*

Cannot deform from torus to sphere without encountering a *"singularity"*

How does this help in classifying types of matter?

• Reminder: Atoms have energy levels that get filled with electrons

- Materials made of many atoms also have energy levels that get filled with electrons.
- If there are low energy excitations (empty states close to filled states), it is an electrical conductor.

Position (real position or abstract momentum-space)

- Materials made of many atoms also have energy levels that get filled with electrons.
- If there are low energy excitations (empty states close to filled states), it is an electrical conductor.
- If there is an energy gap, it is an insulator Energy

Position (real position or abstract momentum-space)

TOPOLOGY

Think about *Deformations* of the Insulator on the microscopic scale...

What Deformations can we do?

•Deformations that you could really do... ex: Change the pressure ... add strain, apply electric fields, etc...

•Deformation that you could never really do...

ex: Coulomb interaction between nuclear charge Q and electron charge Q' is:

$$V(r)=\frac{QQ'}{4\pi\epsilon_0 r}$$

V

Imagine changing it to:

$$(r) = \frac{QQ'}{4\pi\epsilon_{\alpha} r^{\alpha}}$$

Imagine changing the mass of the electrons, protons, neutrons Imagine changing the speed of light

etc...

Cannot deform from torus to sphere without encountering a "singularity"

Can we deform one insulator into another without encountering a "singularity"?

Singularity = Metal = Gap Closes

Deforming

Always an Insulator: No topological Change

Position (real position or abstract momentum-space)

Deforming

Becomes a Metal – Singularity!

Position (real position or abstract momentum-space)

In <u>2 dimensions</u>, the topological classes of insulators are indexed by an integer <u>N</u>

2d Graphene

Electrons trapped here Only interested in this 2d layer

1982 David J. Thouless Prize share: 1/2

1982 David J. Thouless Prize share: 1/2

In 2 dimensions, the topological classes of insulators are indexed by an integer N

N=number of handles!

A precise mapping turns a wavefunction into a topological object.

To deform from one class to another you MUST deform through a metal state (singularity!).

1982 David J. Thouless Prize share: 1/2 In 2 dimensions, the topological classes of insulators are indexed by an integer N

A gedankenexperiment:

In 2 dimensions, the topological classes of insulators are indexed by an integer N

How to find the N≠0 insulators?

All insulators insulate in the bulk – but N≠0 conducts along the edges

In 2 dimensions, the topological classes of insulators are indexed by an integer N

How to find the N≠0 insulators?

All insulators insulate in the bulk – but N≠0 conducts along the edges

Quantized Hall Effect!

Experimental discovery Klaus Von Klitzing, 1980 (1979 Oxford postdoc) Nobel Prize 1985

Is this all there is?

(jump ahead to 2004)

Topology with Symmetry!

If a system has some symmetry, can consider all deformations that also preserve that symmetry.

Main example:

Insist on time reversal symmetry (no magnetism) even as we deform.

These are the first few to be confirmed in experiment....

Bi_xSb_{1-x}, Bi₂Se₃, Bi₂Te₃, Sb₂Te₃, (Bi,Sb)₂Te₃, Bi_{2-x}Sb_xTe_{3-y}Se_y, Sb₂Te₂Se Bi₂(Te,Se)₂(Se,S), TlBiSe₂, TlBiTe₂, TlBi(S,Se)₂, PbBi₂Te₄, PbSb₂Te₄, GeBi₂Te₄ GeBi_{4-x}Sb_xTe₇, (PbSe)₅(Bi₂Se₃)₆, SnTe, Pb_{1-x}Sn_xTe, SmB₆, Bi₁₅Rh₃I₉, Ag₂Te PbLuSb, LuPdBi, YPtBi, LuPtBi,

These are not unusual chemical compounds

... but no one ever noticed they were different!

(Surface conduction, magnetoelectric effect, ...)

Prediction of Topological Insulators (2006)

Once we understood to categorize by Topology and Symmetry.....

Periodic Table of Insulators

Is this all there is?

Once we understood to categorize by Topology and Symmetry.....

Adding a crystal reflection symmetry

	-				
	TCI/TCS	d=1	d=2	d=3	
Reflection	FS1 in mirror	p=8	p=1	p=2	
	FS2 in mirror	p=2	p=3	p=4	
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	
R_{+}	AIII	0	$M\mathbb{Z}$	0	
R_	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	
	AI	$M\mathbb{Z}$	0	0^a	
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	
	D	$M\mathbb{Z}_2^a$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	
R_{+}, R_{++}	DIII	0	$M\mathbb{Z}_2^a$	$M\mathbb{Z}_2$	
	AII	$2M\mathbb{Z}^{a}$	0	$M\mathbb{Z}_2^a$	
	CII	0	$2M\mathbb{Z}^{a}$	0	
	С	0 ^a	0	$2M\mathbb{Z}^{a}$	
	CI	0	0^a	0	
	AI	0^a	0	$2M\mathbb{Z}^{a}$	
	BDI	0	0^a	0	
	D	$M\mathbb{Z}$	0	0^a	
$R_{-},R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	
	AII	$T\mathbb{Z}_2^a$	\mathbb{Z}_2	$M\mathbb{Z}$	
	СП	0	$T\mathbb{Z}_2^a$	\mathbb{Z}_2	
	С	$2M\mathbb{Z}^{a}$	0	$T\mathbb{Z}_2^a$	
	CI	0	$2M\mathbb{Z}^{a}$	0	
R_+	BDI, CII	$2\mathbb{Z}^{a}$	0	$2M\mathbb{Z}^{a}$	
R_{+-}	DIII, CI	$2M\mathbb{Z}^{a}$	0	$2\mathbb{Z}^{a}$	
R+-	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0^a	
R_{-+}	DIII	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2^a$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	
R_{+-}	СП	$2M\mathbb{Z} \oplus 2\mathbb{Z}^a$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2^a$	
R-+	CI	0 ^a	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}^a$	

+ Adding more complicated crystal symmetries

Then move on to topologically classify metals! THE PERIODIC TABLE OF EVERYTHING

Topology and the Classification of Matter

New Physics Hidden in Plain Sight